Radar and stereo vision fusion for multitarget tracking on the special Euclidean group
نویسندگان
چکیده
Reliable scene analysis, under varying conditions, is an essential task in nearly any assistance or autonomous system application, and advanced driver assistance systems (ADAS) are no exception. ADAS commonly involve adaptive cruise control, collision avoidance, lane change assistance, traffic sign recognition, and parking assistance—with the ultimate goal of producing a fully autonomous vehicle. The present paper addresses detection and tracking of moving objects within the context of ADAS. We use a multisensor setup consisting of a radar and a stereo camera mounted on top of a vehicle. We propose to model the sensors uncertainty in polar coordinates on Lie Groups and perform the objects state filtering on Lie groups, specifically, on the product of two special Euclidean groups, i.e., SE(2)2. To this end, we derive the designed filter within the framework of the extended Kalman filter on Lie groups. We assert that the proposed approach results with more accurate uncertainty modeling, since used sensors exhibit contrasting measurement uncertainty characteristics and the predicted target motions result with banana-shaped uncertainty contours. We believe that accurate uncertainty modeling is an important ADAS topic, especially when safety applications are concerned. To solve the multitarget tracking problem, we use the joint integrated probabilistic data association filter and present necessary modifications in order to use it on Lie groups. The proposed approach is tested on a real-world dataset collected with the described multisensor setup in urban traffic scenarios.
منابع مشابه
Adaptive Fusion of Inertial Navigation System and Tracking Radar Data
Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...
متن کاملHuman Tracking Using Delphi ESR-Vision Fusion in Complex Environments
A variety of UGV (Unmanned Ground Vehicle) applications pose the challenge that UGVs need to handle human detection and tracking in complex environments that include dusty, smoky and foggy conditions. These environments make a vision-based human tracking-by-detection system ineffective. To cope with this challenge, we build a radar-vision fusion system, utilizing a 77GHz 2D Delphi ESR (Electron...
متن کاملDistributed Multitarget Tracking and Identity Management
The problem of tracking multiple targets and managing their identities in sensor networks is considered. Each sensor is assumed to have its own surveillance region and an ability to communicate with its neighboring sensors.We propose a scalable, distributed, multitarget-tracking and identity-management algorithm that can track an unknown number of targets and manage their identities efficiently...
متن کاملOn BMD Target Tracking: Data Association and Data Fusion
In this paper we consider multitarget tracking with multiple sensors for BMD. In a previous paper multitarget tracking with a single sensor was considered [8]. A ballistic missile may be in several pieces, presenting multiple targets. Besides the ground based or ship sensor there is also the missile seeker. We consider algorithms for generating and maintaining the tracks needed for BMD. A cue o...
متن کاملCombining multiple scoring systems for target tracking using rank-score characteristics
Video target tracking is the process of estimating the current state, and predicting the future state of a target from a sequence of video sensor measurements. Multitarget video tracking is complicated by the fact that targets can occlude one another, affecting video feature measurements in a highly non-linear and difficult to model fashion. In this paper, we apply a multisensory fusion approac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 83 شماره
صفحات -
تاریخ انتشار 2016